Discover the Covariance | ISI MStat 2016 Problem 6

Join Trial or Access Free Resources

This problem from ISI MStat 2016 is an application of the ideas of indicator and independent variables and covariance of two summative random variables.

Problem- Covariance Problem

Let \(X_{1}, \ldots, X_{n}\) ~ \(X\) be i.i.d. random variables from a continuous distribution whose density is symmetric around 0. Suppose \(E\left(\left|X\right|\right)=2\) . Define \( Y=\sum_{i=1}^{n} X_{i} \quad \text { and } \quad Z=\sum_{i=1}^{n} 1\left(X_{i}>0\right)\).
Calculate the covariance between \(Y\) and \(Z\).

This problem is from ISI MStat 2016 (Problem #6)

Prerequisites

  1. X has Symmetric Distribution around 0 \( \Rightarrow E(X) = 0\).
  2. \( |X| = X.1( X > 0 ) - X.1( X \leq 0 ) = 2X.1( X > 0 ) - X\), where \(X\) is a random variable.
  3. \( X_i\) and \(X_j\) are independent \(\Rightarrow\) \(g( X_i)\) and \(f(X_j)\) are independent.
  4. \(A\) and \(B\) are independent \(\Rightarrow Cov(A,B) = 0\).

Solution

\( 2 = E(|X|) = E(X.1(X >0)) - E(X.1(X \leq 0)) = E(2X.1( X > 0 )) - E(X) = 2E(X.1( X > 0 ))\)

\( \Rightarrow E(X.1( X > 0 )) = 1 \overset{E(X) = 0}{\Rightarrow} Cov(X, 1( X > 0 )) = 1\).

Let's calculate the covariance of \(Y\) and \(Z\).

\( Cov(Y, Z) = \sum_{i,j = 1}^{n} Cov( X_i, 1(X_{j}>0))\)

\( = \sum_{i = 1}^{n} Cov( X_i, 1(X_{i}>0)) + \sum_{i,j = 1, i \neq j}^{n} Cov( X_i, 1(X_{j}>0)) \)

\( \overset{X_i \text{&} X_j \text{are independent}}{=} \sum_{i = 1}^{n} Cov( X_i, 1(X_{i}>0)) = \sum_{i = 1}^{n} 1 = n \).

More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram