Divisibility and Integers | TOMATO B.Stat Objective 89

Join Trial or Access Free Resources

Try this problem from I.S.I. B.Stat Entrance Objective Problem based on Integers and divisibility.

Divisibility and Integers (B.Stat Objective Question )


300 digit number with all digits equal to 1 is

  • divisible neither by 37 nor by 101
  • divisible by both 37 and 101
  • divisible by 37 and not by 101
  • divisible by 101 and not by37

Key Concepts


Integers

Remainders

Divisibility

Check the Answer


Answer: divisible by 37 and 101

B.Stat Objective Problem 89

Challenges and Thrills of Pre-College Mathematics by University Press

Try with Hints


here we take 300 digit number all digit 1s

111...11=\(\frac{999...99}{9}\)(300 digits)

=\(\frac{10^{300}-1}{9}\)=\(\frac{(10^{3})^{100}-1}{9}\)=\(\frac{(10^{3}-1)X}{9}\)

since \(10^{3}-1\)=999 is divisible by 37 then 111...11(300 digits) is divisible by 37

111...11=\(\frac{999...99}{9}\)(300 digits)

=\(\frac{10^{300}-1}{9}\)=\(\frac{(10^{4})^{75}-1}{9}\)=\(\frac{(10^{4}-1)Y}{9}\)

since \(10^{4}-1\)=9999 is divisible by 101 then 111...11(300 digits) is divisible by 101.

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram