Problem on Function | TOMATO BStat Objective 720

Join Trial or Access Free Resources

Try this problem from I.S.I. B.Stat Entrance Objective Problem based on Function.

Problem on Function (B.Stat Objective Question )


Consider the function f(x)=\(tan^{-1}(2tan(\frac{x}{2}))\), where \(\frac{-\pi}{2} \leq f(x) \leq \frac{\pi}{2}\) Then

  • \(\lim\limits_{x \to \pi-0}f(x)=\frac{\pi}{2}\), \(\lim\limits_{x \to \pi+0}f(x)=\frac{-\pi}{2}\)
  • \(\lim\limits_{x \to \pi}f(x)=\frac{\pi}{2}\)
  • \(\lim\limits_{x \to \pi-0}f(x)=\frac{-\pi}{2}\), \(\lim\limits_{x \to \pi+0}f(x)=\frac{\pi}{2}\)
  • \(\lim\limits_{x \to \pi}f(x)=\frac{-\pi}{2}\)

Key Concepts


Equation

Roots

Algebra

Check the Answer


Answer:\(\lim\limits_{x \to \pi}f(x)=\frac{\pi}{2}\)

B.Stat Objective Problem 720

Challenges and Thrills of Pre-College Mathematics by University Press

Try with Hints


f(x)=\(tan^{-1}(2tan{\frac{x}{2}})\)

\(\lim\limits_{x \to \pi}f(x)\)

\(=\lim\limits_{x \to \pi}tan^{-1}(2tan{\frac{x}{2}})=\frac{\pi}{2}\)

\(\lim\limits_{x \to \pi-0}f(x)\)

\(=\lim\limits_{x \to \pi-0}tan^{-1}(2tan{\frac{x}{2}})=\frac{\pi}{2}\)

\(\lim\limits_{x \to \pi+0}f(x)\)

\(=\lim\limits_{x \to \pi+0}tan^{-1}(2tan{\frac{x}{2}})=\frac{\pi}{2}\)

So \(\lim\limits_{x \to \pi}f(x)=\frac{\pi}{2}\)

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram