Inequality in RMO 2019 Problem 3 Solution

Join Trial or Access Free Resources
[et_pb_section fb_built="1" _builder_version="4.0"][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Understand the problem

[/et_pb_text][et_pb_text _builder_version="3.27.4" text_font="Raleway||||||||" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]Let a, b, c be positive real numbers such that a + b + c = 1. Prove that $$ \frac {a} {a^2 + b^3 + c^3} + \frac {b}{ b^2 + c^3 + a^3 } + \frac {c} { c^2 + a^3 + b^3 } \leq \frac{1}{5abc} $$

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="4.0" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px"][et_pb_accordion_item title="Source of the problem" open="on" _builder_version="4.0"]

Regional Math Olympiad, 2019 Problem 3[/et_pb_accordion_item][et_pb_accordion_item title="Topic" _builder_version="4.0" open="off"]Inequality[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="4.0" open="off"]6/10[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="3.29.2" open="off"]Challenges and Thrills in Pre College Mathematics[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Start with hints

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="4.0" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff"][et_pb_tab title="Hint 0" _builder_version="3.22.4"]Do you really need a hint? Try it first!

[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="4.0"]

The clue: Number 5 in the right-hand side!We will be applying AM-GM inequality. But first, to get the 5 on the right, we need 5 terms in the left (or bunch of five terms). 

Try to use a+b+c =1 to cook it up!

[/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="4.0"]In the first term's denominator, we have \( a^2 + b^3 + c^3 \).Multiply 1 to \( a^2 \) that is multiply by a + b + c (nothing changes because, multiplying by does not change anything).Hence we have \(a^2 \cdot 1 + b^3 + c^3 =   a^2 ( a + b + c) + b^3 + c^3 \)Expanding we have  \( a^3 +  b^3 + c^3 + a^2 b + a^2 c \)Now apply AM - GM inequality to this we have $$ \frac{ a^3 +  b^3 + c^3 + a^2 b + a^2 c}{5} \geq (a^3 \cdot b^3 \cdot c^3 \cdot a^2 b \cdot a^2 c )^{1/5}  $$Therefore we have $$ a^3 +  b^3 + c^3 + a^2 b + a^2 c  \geq 5 \cdot (a^7 b^4 c^4)^{1/5}  $$Taking the reciprocal we have and noting that the left hand side is still \( a^2 + b^3 + c^3 \) we have $$ \frac {1} {a^2 + b^3 + c^3} \leq \frac {1}{5 \cdot (a^{7/5} b^{4/5} c^{4/5} } $$Multiplying the numerator and denominator by a we have the desired expression in the left.$$ \frac {a} {a^2 + b^3 + c^3} \leq \frac {a}{5 \cdot (a^{7/5} b^{4/5} c^{4/5} } $$Simplifying$$ \frac {a} {a^2 + b^3 + c^3} \leq \frac {1}{5 \cdot (a^{2/5} b^{4/5} c^{4/5} } $$Now try computing the same for the other two terms on the left.[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="4.0"]$$ \frac {a} {a^2 + b^3 + c^3} \leq \frac {1}{5 \cdot (a^{2/5} b^{4/5} c^{4/5} } $$$$ \frac {b} {b^2 + c^3 + a^3} \leq \frac {1}{5 \cdot (a^{4/5} b^{2/5} c^{4/5} } $$$$ \frac {c} {c^2 + a^3 + b^3} \leq \frac {1}{5 \cdot (a^{4/5} b^{4/5} c^{2/5} } $$Adding we have $$ \frac {a} {a^2 + b^3 + c^3} + \frac {b} {b^2 + c^3 + a^3}  + \frac {c} {c^2 + a^3 + b^3} \leq \frac {1}{5 \cdot (a^{2/5} b^{4/5} c^{4/5} } +  \frac {1}{5 \cdot (a^{4/5} b^{2/5} c^{4/5} }  \frac {1}{5 \cdot (a^{4/5} b^{4/5} c^{2/5} } $$Now apply AM- GM Inequality one more time to the left hand term.  [/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="4.0"]$$ \frac{ \frac {1}{5 \cdot (a^{2/5} b^{4/5} c^{4/5} } +  \frac {1}{5 \cdot (a^{4/5} b^{2/5} c^{4/5} } +  \frac {1}{5 \cdot (a^{4/5} b^{4/5} c^{2/5} }}{3} \leq ( \frac {1}{5 \cdot (a^{2/5} b^{4/5} c^{4/5} } \cdot  \frac {1}{5 \cdot (a^{4/5} b^{2/5} c^{4/5} }  \cdot \frac {1}{5 \cdot (a^{4/5} b^{4/5} c^{2/5} })^{1/3}  $$Simplifying  we have $$ \frac{ \frac {1}{5 \cdot (a^{2/5} b^{4/5} c^{4/5} } +  \frac {1}{5 \cdot (a^{4/5} b^{2/5} c^{4/5} } +  \frac {1}{5 \cdot (a^{4/5} b^{4/5} c^{2/5} }}{3} \leq ( \frac {1}{5^3 \cdot (a^{10/5} b^{10/5} c^{10/5} } )^{1/3}  $$Simplifying further we have$$  \frac {1}{5 \cdot (a^{2/5} b^{4/5} c^{4/5} } +  \frac {1}{5 \cdot (a^{4/5} b^{2/5} c^{4/5} } +  \frac {1}{5 \cdot (a^{4/5} b^{4/5} c^{2/5} } \leq 3 \cdot  \frac {(abc)^{1/3}}{5abc} $$Finally we know that \( 3 \cdot (abc)^{1/3} \leq 1 \). Why? Apply AM-GM to a, b, c$$ \frac{a+b+c}{3} \geq (abc)^{1/3} $$Since a + b + c = 1 we have the result.[/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Watch video

[/et_pb_text][et_pb_video src="https://youtu.be/j7ySvfiwRVQ" _builder_version="4.0" hover_enabled="0"][/et_pb_video][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Connected Program at Cheenta

[/et_pb_text][et_pb_blurb title="Math Olympiad Program" url="https://www.cheenta.in/matholympiad/" url_new_window="on" image="https://www.cheenta.in/wp-content/uploads/2018/03/matholympiad.png" _builder_version="3.23.3" header_font="||||||||" header_text_color="#e02b20" header_font_size="48px" link_option_url="https://www.cheenta.in/matholympiad/" link_option_url_new_window="on"]

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year.Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.[/et_pb_blurb][et_pb_button button_url="https://www.cheenta.in/matholympiad/" url_new_window="on" button_text="Learn More" button_alignment="center" _builder_version="3.23.3" custom_button="on" button_bg_color="#0c71c3" button_border_color="#0c71c3" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" background_layout="dark" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3"][/et_pb_button][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Similar Problems

[/et_pb_text][et_pb_post_slider include_categories="9" _builder_version="4.0" hover_enabled="0" image_placement="left"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]
More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram