ISI BStat - BMath Entrance 2023, Problem 2, Hints and Solution

Join Trial or Access Free Resources

In this problem we use mathematical induction and trigonometric manipulations. Finally we also compute the limit of the resulting sequence.

Question

Let $a_0=\frac{1}{2}$ and $a_n$ be defined inductively by $a_n=\sqrt{\frac{1+a_{n-1}}{2}}$, $n \geq 1.$
1. Show that for $n=0,1,2, \dots a_n=cos\theta_n$ for some $0<\theta_n<\pi/2$ and determine $\theta_n$.
2. Using (a) or otherwise, calculate $lim_{n \to \infty} 4^n\left(1-a_n\right)$

Hint 1

Using Inductive hypothesis and basic trigonometry, try to deduce the $n$-th term of the sequence.

Hint 2

Deduce the limit after substituting the $n$-th term that is found previously.

Final Solution

Part a

Here $a_o =\frac{1}{2}=cos\frac{\pi}{3}=cos\theta_{0}$(say).
Now, Suppose $a_{n-1}=cos \theta_{n-1}$ where $0<\theta_n<\frac{\pi}{2}$.
Now, $a_n=\sqrt{\frac{1+a_{n-1}}{2}}$
$=\sqrt{\frac{1+cos \theta_{n-1}}{2}}$
$=\sqrt{\frac{2cos^{2} \theta_{n-1}}{2}}$
$=cos \frac{\theta_{n-1}}{2}$
So, $\theta_n=\frac{\theta_{n-1}}{2}$
Again, $\theta_n=\frac{\theta_{n-1}}{2}=\frac{\theta_{n-2}}{2^{2}}$=...=$\frac{\theta_{0}}{2^{n}}$.
So, $\theta_n=\frac{\pi}{3.2^{n}}$.

Part b

$\lim_{n\to\infty}  4^n\left(1-a_n\right)$

$ =\lim_{n\to\infty}2^{2n}.\{1-cos\frac{\pi}{3.2^{n}}\} $

$ =\lim_{n\to\infty}2^{2n}.2sin^{2}\frac{\pi}{3.2^{n+1}}$

$ = \lim_{\frac{1}{2^{n+1}} \to 0} \left(\frac{sin\frac{\pi}{3.2^{n+1}} }{\frac{\pi}{3.2^{n+1}}}\right)^{2} . \left(\frac{\pi}{3}\right)^{2} $

$=\frac{1}{2}.\frac{{\pi}^2}{9}$

$=\frac{{\pi}^2}{18}.$

More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram