Probability Theory | ISI MStat 2015 PSB Problem B5

Join Trial or Access Free Resources

This is a detailed solution based on Probability Theory of ISI MStat 2015 PSB Problem B5, with the prerequisites mentioned explicitly. Stay tuned for more.

Problem

Suppose that \(X\) and \(Y\) are random variables such that

\(E(X+Y) = E(X-Y)=0 \)
Var\((X+Y)=3 \)
Var\((X-Y)=1\)


(a) Evaluate Cov\((X, Y)\).
(b) Show that \(E|X+Y| \leq \sqrt{3}\).
(c) If in addition, it is given that \((X, Y)\) is bivariate normal, calculate E\((|X+Y|^{3})\).

Prerequisites

  • Basic Probability theory ( Expectation, Variance, and Covariance )
  • Normal Distribution
  • Gamma Integral

Solution

(a)

\(Var(aX + bY) = a^2\text{Var}(X) +2ab\text{Cov}(X,Y) + b^2\text{Var}(Y) \rightarrow (*) \)

Using \((*)\), we use Var\((X+Y)\) - Var\((X-Y)\) = \(4 \text{Cov}(X,Y) = 2\)

\(\Rightarrow \text{Cov}(X,Y) = \frac{1}{2} \).

(b)

Say \(Z = (X + Y)\)

\({\text{E}(Z)} = 0\).

\( \text{Var}(Z) = \text{E}(Z^2) - {\text{E}(Z)}^2 = \text{E}(Z^2) \).

Do you remember the Cauchy - Schwartz Inequality?

\(3 = \text{Var}(Z) = \text{E}(Z^2) = \text{E}(|Z|^2) \overset{ Cauchy - Schwartz Inequality }{ \geq } {\text{E}(|Z|)}^2 \). Hence, \( {\text{E}(|Z|)} \leq \sqrt{3} \).

(c)

\(Z = (X + Y)\) and \( \text{E}(X) = \text{E}(Y) = 0\).

\((X, Y)\) is bivariate normal \( \Rightarrow Z = X + Y \) ~ \(N ( 0 , 3)\).

\( \text{E}(|Z|^3) \overset{\text{ Z is symmetric around 0}}{=}\)

\( 2 \times \frac{1}{\sqrt{6}\pi} \times \int_{0}^{\infty} z^3 e^{ - \frac{z^2}{6}} dz \overset{u = \frac{z^2}{6}}{=} \frac{1}{\sqrt{6}\pi} \times 36 \times \int_{0}^{\infty} u^{2 - 1}.e^{ - u} du = \frac{1}{\sqrt{6}\pi} \times 36\Gamma(2) \)

\(= \frac{36}{\sqrt{6}\pi}\).

More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram