Locus of vertex of an equilateral triangle

Join Trial or Access Free Resources
[et_pb_section fb_built="1" _builder_version="3.22.1"][et_pb_row _builder_version="3.22.1"][et_pb_column type="4_4" _builder_version="3.22.1"][et_pb_text _builder_version="3.22.1" inline_fonts="Marvel,Raleway" header_font="||||||||" text_font="||||||||" text_orientation="center"]

Try this beautiful problem. We will give you hints!

ABC is an equilateral triangle with vertex A fixed and B moving in a given straight line. Find the locus of C

 

[/et_pb_text][et_pb_accordion _builder_version="3.22.1" body_font="Raleway||||||||" toggle_font="||||||||"][et_pb_accordion_item title="What is the big idea ?" open="on" _builder_version="3.22.1" title_text_shadow_horizontal_length="0em" title_text_shadow_vertical_length="0em" title_text_shadow_blur_strength="0em" body_text_shadow_horizontal_length="0em" body_text_shadow_vertical_length="0em" body_text_shadow_blur_strength="0em"]

Think about what does not change.

1. Point A is fixed.
2. The line on which B moves is fixed.
3. The fact that ABC is always equilateral is fixed.

[/et_pb_accordion_item][et_pb_accordion_item title="What changes? " open="off" _builder_version="3.22.1" title_text_shadow_horizontal_length="0em" title_text_shadow_vertical_length="0em" title_text_shadow_blur_strength="0em" body_text_shadow_horizontal_length="0em" body_text_shadow_vertical_length="0em" body_text_shadow_blur_strength="0em"]

1. The position of C will change (as B moves).
2. Length of the sides of the triangle will change (it needs to stay equilateral).

[/et_pb_accordion_item][et_pb_accordion_item title="How to get started?" open="off" open_toggle_text_color="#0c71c3" open_toggle_background_color="#ffffff" _builder_version="3.22.1" title_text_shadow_horizontal_length="0em" title_text_shadow_vertical_length="0em" title_text_shadow_blur_strength="0em" body_text_shadow_horizontal_length="0em" body_text_shadow_vertical_length="0em" body_text_shadow_blur_strength="0em"]

Carefully draw several positions of B (and corresponding positions of C). This will give you an idea about what is the possible path traced out by C

[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.22.1" text_font="Raleway||||||||" border_radii="on|5px|5px|5px|5px" border_width_all="1px" border_color_all="#0c71c3" box_shadow_style="preset4" text_orientation="center" custom_padding="20px||20px"]

Guess the path!

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row custom_padding="||69px|||" _builder_version="3.22.1"][et_pb_column type="4_4" _builder_version="3.22.1"][et_pb_video src="https://www.cheenta.in/wp-content/uploads/2019/04/locus-of-a-vertex.mov" _builder_version="3.22.1"][/et_pb_video][et_pb_divider divider_style="dashed" divider_position="center" _builder_version="3.22.1"][/et_pb_divider][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.22.1"][et_pb_column type="1_2" _builder_version="3.22.1"][et_pb_blurb title="Math Olympiad Program" url="https://www.cheenta.in/matholympiad/" image="https://www.cheenta.in/wp-content/uploads/2018/03/matholympiad.png" _builder_version="3.22.1" body_font="Raleway||||||||" box_shadow_style="preset1" transform_translate="-3px|0px" custom_padding="20px|20px|20px|20px||" link_option_url="https://www.cheenta.in/matholympiad/"]

This is problem is a part of the Math Olympiad Program and I.S.I. Entrance Program at Cheenta.

 

[/et_pb_blurb][et_pb_button button_url="https://www.cheenta.in/matholympiad/" button_text="Learn More" _builder_version="3.22.1" custom_button="on" button_bg_color="#0c71c3" button_border_color="#0c71c3" button_font="||||||||" box_shadow_style="preset1" transform_translate="37px|-38px" background_layout="dark"][/et_pb_button][/et_pb_column][et_pb_column type="1_2" _builder_version="3.22.1"][et_pb_text _builder_version="3.22.1" text_font="Raleway||||||||"]

Books Suggestion

1. Challenges and Thrills of Pre College Mathematics.
2. Geometry Revisited by Coxeter.

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.22.1"][et_pb_column type="4_4" _builder_version="3.22.1"][et_pb_divider divider_style="dashed" divider_position="center" _builder_version="3.22.1" custom_margin="||63px|||"][/et_pb_divider][et_pb_image align="center" src="https://www.cheenta.in/wp-content/uploads/2019/04/Locus-of-a-point.png" _builder_version="3.22.1" custom_padding="||35px|||"][/et_pb_image][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#e02b20" _builder_version="3.22.1" tab_font="Raleway||||||||" tab_text_color="#ffffff" body_font="Raleway||||||||"][et_pb_tab title="Hint 1" _builder_version="3.22.1"]

Drop a perpendicular from A on the line L. Suppose the feet of the perpendicular is P.

Make AB such that \( \angle BAP = 30^o \)

Reflect BAP about AP. Let the image of B under reflection be C. 

[/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="3.22.1"]

Draw a line through C that makes an angle of \( 60^0 \) with L. We will call this Red line.

Claim: This Red Line is part of the locus of point C.

[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="3.22.1"]

Pick another point \( B_1 \) on L.

Joint \( AB_1 \)

Make angle \( 60^0 \) with \( AB_1 \) and draw a line. Let it hit the red line at \( C_1 \)

Show that \( AB_1 C_1 \) is equilateral.

[/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="3.22.1"]

Notice that \( AB_1 C C_1 \) is cyclic. Why? After all \( \angle B_1 A C_1 = 60^0 \) and \( \angle B_1 C C_1 = 120^o \). Hence opposite angles add up to \( 180^o \).

Any quadrilateral in which opposite angles add up to \( 180^o \) is cyclic. 

This immediately proves \( AB_1 C_1 \) is equilateral. Hence red line is part of the locus. 

Find the other part of the locus by interchanging the positions of B and C n first step. 

[/et_pb_tab][/et_pb_tabs][/et_pb_column][/et_pb_row][/et_pb_section]
More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

One comment on “Locus of vertex of an equilateral triangle”

  1. locus of c is the straight line through c making 60 degrees angle with the base BC produced. easy one

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram