Problem on Complex plane | AIME I, 1988| Question 11

Join Trial or Access Free Resources

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1988 based on Complex Plane.

Problem on Complex Plane - AIME I, 1988


Let w_1,w_2,....,w_n be complex numbers. A line L in the complex plane is called a mean line for the points w_1,w_2,....w_n if L contains points (complex numbers) z_1,z_2, .....z_n such that \(\sum_{k=1}^{n}(z_{k}-w_{k})=0\) for the numbers \(w_1=32+170i, w_2=-7+64i, w_3=-9+200i, w_4=1+27i\) and \(w_5=-14+43i\), there is a unique mean line with y-intercept 3. Find the slope of this mean line.

  • is 107
  • is 163
  • is 634
  • cannot be determined from the given information

Key Concepts


Integers

Equations

Algebra

Check the Answer


Answer: is 163.

AIME I, 1988, Question 11

Elementary Algebra by Hall and Knight

Try with Hints


\(\sum_{k=1}^{5}w_k=3+504i\)

and \(\sum_{k-1}^{5}z_k=3+504i\)

taking the numbers in the form a+bi

\(\sum_{k=1}^{5}a_k=3\) and \(\sum_{k=1}^{5}b_k=504\)

or, y=mx+3 where \(b_k=ma_k+3\) adding all 5 equations given for each k

or, 504=3m+15

or, m=163.

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram