Row of Pascal Triangle | AIME I, 1992 | Question 4

Join Trial or Access Free Resources

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1992 based on Row of Pascal Triangle.

Row of Pascal Triangle - AIME I, 1992


In Pascal's Triangle, each entry is the sum of the two entries above it. Find the row of Pascal's triangle do three consecutive entries occur that are in the ratio 3:4:5.

  • is 107
  • is 62
  • is 840
  • cannot be determined from the given information

Key Concepts


Integers

Digits

Combinatorics

Check the Answer


Answer: is 62.

AIME I, 1992, Question 4

Elementary Number Theory by David Burton

Try with Hints


For consecutive entries

\(\frac{{n \choose (x-1)}}{3}=\frac{{n \choose x}}{4}=\frac{{n \choose {x+1}}}{5}\)

from first two terms \(\frac{n!}{3(x-1)!(n-x+1)!}=\frac{n!}{4x!(n-x)!}\)

\(\Rightarrow \frac{1}{3(n-x+1)}=\frac{1}{4x}\)

\(\Rightarrow \frac{3(n+1)}{7}=x\) is first equation

for the next two terms

\(\frac{n!}{4(n-x)!x!}=\frac{n!}{5(n-x-1)!(x+1)!}\)

\(\Rightarrow \frac{4(n-x)}{5}=x+1\)

\(\Rightarrow \frac{4n}{5}=\frac{9x}{5}+1\)

from first equation putting value of x here gives

\(\Rightarrow \frac{4n}{5}=\frac{9 \times 3(n+1)}{5 \times 7}+1\)

\(\Rightarrow n=62, x=\frac{3(62+1)}{7}=27\)

\(\Rightarrow\) n=62.

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram