We are going to discuss about Series and Trigonometry from I.S.I. B.Stat Entrance Objective Problem (2009).
Given that $k(1+2+3++...+n)$= $(1^2+2^2+...+n^2)$ find $cos^{-1}\frac{2n-3k}{2}$.
Series
Trigonometry
Angles
Answer: $\frac{4\pi}{3}$, $\frac{2\pi}{3}$
I.S.I. B.Stat Entrance Objective Problem (2009)
Challenges and Thrills of Pre-College Mathematics by University Press
$(1^2+2^2+...+n^2)=\frac{n(n+1)(2n+1)}{6}$
$(1+2+...+n)=\frac{n(n+1)}{2}$
$\frac{kn(n+1)}{2}=\frac{n(n+1)(2n+1)}{6}$
then k=$\frac{2n+1}{3}$
$cos^{-1}(\frac{2n-3(\frac{2n+1}{3})}{2})$
$=cos^{-1}(\frac{-1}{2})$
$=\frac{4\pi}{3}, \frac{2\pi}{3}$