Series and Trigonometry | ISI B.Stat Entrance 2009

Join Trial or Access Free Resources

Problem - Series and Trigonometry (ISI B.Stat Entrance)


We are going to discuss about Series and Trigonometry from I.S.I. B.Stat Entrance Objective Problem (2009).

Given that $k(1+2+3++...+n)$= $(1^2+2^2+...+n^2)$ find $cos^{-1}\frac{2n-3k}{2}$.

  • $\frac{\pi}{3}$
  • $\frac{\pi}{2}$
  • $\frac{\pi}{6}$
  • $\frac{4\pi}{3}$, $\frac{2\pi}{3}$

Key Concepts


Series

Trigonometry

Angles

Check the Answer


Answer: $\frac{4\pi}{3}$, $\frac{2\pi}{3}$

I.S.I. B.Stat Entrance Objective Problem (2009)

Challenges and Thrills of Pre-College Mathematics by University Press

Try with Hints


$(1^2+2^2+...+n^2)=\frac{n(n+1)(2n+1)}{6}$

$(1+2+...+n)=\frac{n(n+1)}{2}$

$\frac{kn(n+1)}{2}=\frac{n(n+1)(2n+1)}{6}$

then k=$\frac{2n+1}{3}$

$cos^{-1}(\frac{2n-3(\frac{2n+1}{3})}{2})$

$=cos^{-1}(\frac{-1}{2})$

$=\frac{4\pi}{3}, \frac{2\pi}{3}$

Watch the Video




Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram