Triangle and integers | AIME I, 1995 | Question 9

Join Trial or Access Free Resources

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1995 based on Triangle and integers.

Triangle and integers - AIME I, 1995


Triangle ABC is isosceles, with AB=AC and altitude AM=11, suppose that there is a point D on AM with AD=10 and \(\angle BDC\)=3\(\angle BAC\). then the perimeter of \(\Delta ABC\) may be written in the form \(a+\sqrt{b}\) where a and b are integers, find a+b.

Triangle and integers
  • is 107
  • is 616
  • is 840
  • cannot be determined from the given information

Key Concepts


Integers

Triangle

Trigonometry

Check the Answer


Answer: is 616.

AIME I, 1995, Question 9

Plane Trigonometry by Loney

Try with Hints


Let x= \(\angle CAM\)

\(\Rightarrow \angle CDM =3x\)

\(\Rightarrow \frac{tan3x}{tanx}=\frac{\frac{CM}{1}}{\frac{CM}{11}}\)=11 [by trigonometry ratio property in right angled triangle]

\(\Rightarrow \frac{3tanx-tan^{3}x}{1-3tan^{2}x}=11tanx\)

solving we get, tanx=\(\frac{1}{2}\)

\(\Rightarrow CM=\frac{11}{2}\)

\(\Rightarrow 2(AC+CM)\) where \(AC=\frac{11\sqrt {5}}{2}\) by Pythagoras formula

=\(\sqrt{605}+11\) then a+b=605+11=616.

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram