Trigonometry and greatest integer | AIME I, 1997 | Question 11

Join Trial or Access Free Resources

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1997 based on Trigonometry and greatest integer.

Trigonometry and greatest integer - AIME I, 1997


Let x=\(\frac{\displaystyle\sum_{n=1}^{44}cos n}{\displaystyle\sum_{n=1}^{44}sin n}\), find greatest integer that does not exceed 100x.

  • is 107
  • is 241
  • is 840
  • cannot be determined from the given information

Key Concepts


Trigonometry

Greatest Integer

Algebra

Check the Answer


Answer: is 241.

AIME I, 1997, Question 11

Plane Trigonometry by Loney

Try with Hints


here \(\displaystyle\sum_{n=1}^{44}cosn+\displaystyle\sum_{n=1}^{44}sin n\)

=\(\displaystyle\sum_{n=1}^{44}sinn+\displaystyle\sum_{n=1}^{44}sin(90-n)\)

=\(2^\frac{1}{2}\displaystyle\sum_{n=1}^{44}cos(45-n)\)

=\(2^\frac{1}{2}\displaystyle\sum_{n=1}^{44}cosn\)

\(\displaystyle\sum_{n=1}^{44}sin n=(2^\frac{1}{2}-1)\displaystyle\sum_{n=1}^{44}cosn\)

\(\Rightarrow x=\frac{1}{2^\frac{1}{2}-1}\)

\(\Rightarrow x= 2^\frac{1}{2}+1\)

\(\Rightarrow 100x=(100)(2^\frac{1}{2}+1)\)=241.

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram