Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1995 based on Trigonometry and positive integers.
Given that (1+sint)(1+cost)=\(\frac{5}{4}\) and (1-sint)(1-cost)=\(\frac{m}{n}-k^\frac{1}{2}\) where k,m,n are positive integers with m and n relatively prime, find k+m+n.
Integers
Algebra
Trigonometry
Answer: is 27.
AIME I, 1995, Question 7
Plane Trigonometry by Loney
Let (1-sint)(1-cost)=x
\(\Rightarrow \frac{5x}{4}=(1-sin^{2}t)(1-cos^{2}t)=sin^{2}tcos^{2}t\)
\(\Rightarrow\frac{(5x)^\frac{1}{2}}{2}=sintcost\)
from given equation sint+cost=\(\frac{5}{4}-(sin^{2}t+cos^{2}t)-sintcost\)=\(\frac{1}{4}-\frac{(5x)^\frac{1}{2}}{2}\)
again (1+sint)(1+cost)-2sintcost=x
\(\Rightarrow x=\frac{5}{4}-2(\frac{1}{4}-\frac{(5x)^\frac{1}{2}}{2})=\frac{3}{4}+(5x)^\frac{1}{2}\)
\(\Rightarrow (x-\frac{3}{4})^{2}=5x\)
\(\Rightarrow x=\frac{13}{4}-(10)^\frac{1}{2}\) for \(x \geq 0\)
\(\Rightarrow 13+4+10=27\).